什么是等价无穷小?
等价无穷小就是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。等价无穷小是无穷小之间的一种关系,无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。等价无穷小替换是计算。
1、什么是等价的无穷小?
等价无穷小:是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。同阶无穷小:如果lim F(x)=0,lim G(x)=0,且lim F(x)/G(x)=c,c为常数并且c≠0,则称F(x)和 G(x)。
2、什么是等价无穷小?
等价无穷小量:lim(x趋近于x0)f(x)/g(x)=1,则称ƒ和ɡ是当x趋近于x0时的等价无穷小量,记做f(x)~g(x)[x趋近于x0]。
3、无穷小量和等价无穷小量有哪些公式
等价无穷小的公式:sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1。(a^x)-1~x*lna [a^x-1)/x~lna]。(e^x)-1~x、ln(1+x)~x。(1+Bx)^a-1~aBx、[。
4、高数九个基本的等价无穷小量是什么
等价无穷小替换是计算未定型极限的常用 *** ,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件 :被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价。
5、高数九个基本的等价无穷小量是什么
高数九个基本的等价无穷小量是:当x—>0的时候,sinx~x,tanx~x,sinx~tanx,1-cosx~x²/2,tanx-sinx~x³/2,e^x-1~x,√(1+x)-1~x/2,√(1-x)-1~-x/2,ln(1+x)~x。等价无穷小量指。
6、有哪些常用的等价无穷小?
等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。无穷小的性质:无穷小量。
7、什么是等价无穷小
等价无穷小首先来看看什么是无穷小:无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞。
8、常见的等价无穷小有哪些
常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。采用泰勒展开的高阶等价无穷小:sinx=x-(1/6)x^3+o(x^3)cosx=1-(x^2)。
9、高数九个基本的等价无穷小量是什么?
高数九个基本的等价无穷小量是:当x—>0的时候,sinx~x,tanx~x,sinx~tanx,1-cosx~x²/2,tanx-sinx~x³/2,e^x-1~x,√(1+x)-1~x/2,√(1-x)-1~-x/2,ln(1+x)~x。高数,就是高等。